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Abstract At any resolution level of wavelet expansions the physical observable of
the kinetic energy is represented by an infinite matrix which is “canonically” chosen
as the projection of the operator −�/2 onto the subspace of the given resolution. It
is shown, that this canonical choice is not optimal, as the regular grid of the basis
set introduces an artificial consequence of its periodicity, and it is only a particular
member of possible operator representations. We present an explicit method of pre-
paring a near optimal kinetic energy matrix which leads to more appropriate results
in numerical wavelet based calculations. This construction works even in those cases,
where the usual definition is unusable (i.e., the derivative of the basis functions does
not exist). It is also shown, that building an effective kinetic energy matrix is equiva-
lent to the renormalization of the kinetic energy by a momentum dependent effective
mass compensating for artificial periodicity effects.

Keywords Kinetic energy operator · Operator representation ·Wavelet analysis

1 Introduction

Wavelets are commonly used for analyzing and for a compact storage of complex
distributions like two dimensional images, temporal signals, and even for solving
partial differential equations. Goedecker and Ivanov [1] solved the Poisson equation,
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Cho et al. employed wavelets in solving the Schrödinger equation for Hydrogen-like
atoms [2]. Using this tool, all electron calculations were also performed within the
framework of the local density approximation applying pseudopotentials and super-
cells [3], Car–Parinello algorithm [4] and in Ref. [5] a new approach for magnetic
ordering was presented. Arias and his coworkers developed Kohn–Sham equations
based wavelet method [6], and also tested for various systems (e.g., [7] and [8]).

Wavelet analysis is a popular label applied for the concept of multiresolution analy-
sis (MRA), which covers a systematically refined basis function set of Hilbert spaces.
We refer to basic textbooks (see e.g., [9,10]) for the details.

In our previous works we have shown that the surroundings of a molecule can be
described at a rather rough resolution level [11,12]. We have also demonstrated [13]
that electron–electron cusp singularity of the two-electron density operator can be eas-
ily reproduced by the method of MRA. In [14] we have studied the detail structure of
the wave function at various refinement levels using MRA. An adaptive method was
also developed for identifying the fine structure localization regions, where further
refinement of the wave function is necessary without solving the eigenvalue equation
in the whole subspace expanded by the basis functions of the given resolution level.

2 Systematic error in finite resolution eigenfunctions

While having studied the question, which physical regions of the potential need a high
resolution expansion of the wave function, we have solved numerically the matrix
form of the one particle Schrödinger equation of exactly solvable models, with the
Hamiltonian

H = −1

2
�+ V (x). (1)

The algebraic representation of the Schrödinger equation

H�i = Ei�i (2)

for the i th excited state is derived by considering that according to the MRA con-
struction, at the resolution level M , the Hilbert space H is approximated by one of its
subspaces H[M] = span{sM�(x)|� ∈ Z}, where the orthonormal basis functions

sM�(x) = 2M/2s(2M x − �) (3)

are the scaled and translated versions of the “mother” scaling function s(x). The trans-
lated scaling functions are “sitting” on an equidistant grid of grid length 2−M . The
series of subspaces H[M] (M →∞) “approximates” in a given sense [9] the complete
Hilbert space H and the projectors

PM =
∑

�∈Z
|sM�〉〈sM�| (4)

of H[M] “approximate” the identity operator. By inserting PM into (2) one arrives at

123



J Math Chem (2009) 46:261–282 263

H PM�i ∼= Ei�i . (5)

Multiplying (5) by the basis element sM j from the left results in

∑

�∈Z
〈sM j |H |sM�〉 〈sM�|�i 〉 ∼= Ei 〈sM j |�i 〉. (6)

How well approximation (5) works is far from being understood. Nevertheless, the
above method of algebraization is conventional, which in a general form was intro-
duced in 1915 by B. G. Galerkin, for converting continuous operator problems to dis-
crete problems [15]. Galerkin’s method is widely known in engineering and applied
mathematics, however, this terminology has not become an established custom in the
quantum mechanics community, and later on, we will simply refer to this procedure
as “canonical”.

Of course, the canonical method includes the solution of the eigenvalue problem

∑

�∈Z
H [M]j� cM� = E [M]i cM j (7)

of the Hamiltonian matrix H [M]j� = 〈sM j |H |sM�〉. The eigenvalue E [M]i is only an
approximation to the exact eigenvalue Ei (an upper bound for the ground state), and
the eigenvectors cM� define an approximation

�
[M]
i (x) =

∑

�∈Z
cM� sM�(x) (8)

of the wave function �i (x). One cannot expect, of course, that (8) gives a better result
than the best approximation

�
[M]
i = PM�i =

∑

�∈Z
〈sM�|�i 〉 sM� (9)

in the subspace H[M].
For an illustration, we have chosen the simplest analytically solvable model of the

potential box. The alternative of the free electron problem was singled out, as the wave
functions should be square integrable in order to be able to successfully describe it
with matrix methods. Figure 1 shows the exact excited state �5, its projection �

[0]
5

to the subspace of resolution M = 0, and the solution �
[0]
5 related to the eigenvalue

problem (7). The Hamiltonian matrix was calculated using the compactly supported
6 parameter Daubechies scaling functions [9]. As the first derivative of these basis
functions exists, the kinetic energy matrix elements were determined by

T [M]j� =
1

2
〈sM j | −�|sM�〉 = 1

2
〈(−i∇)sM j |(−i∇)sM�〉

= 1

2

∫
s′M j (x)s′M�(x)dx . (10)
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Here we have used the fact, that the momentum operator −i∇ is self adjoint. The
potential energy matrix elements were calculated numerically with the potential
function

V (x) =
{

0 if |x | ≤ L ,

W if |x | > L .
(11)

By a careless analysis of the results one can easily draw erroneous conclusions.
One might think, that at the regions, where the difference of the exact and approxi-
mate solution is large, a further refinement of the basis set is necessary. Theoretically,
this could be accomplished by adding wavelets sitting in the regions of large errors.
Wavelets are localized basis functions of the orthogonal complement subspace W [M]
of H[M] in the embedding subspace H[M+1] = H[M] ⊕W [M].

According to Fig. 1 the large error regions are located at the steepest parts of the
oscillating wave function. At these places, however, the scaling function expansion

Fig. 1 Exact (solid line) and approximate (dashed line) wave functions �5 and �
[0]
5 of the potential box

(11), with L = 15 a.u., W = 100 a.u. The difference of the exact wave function and the solution of the
canonical eigenvalue problem is also shown. For a reference the difference of the exact wave function and
its projection to subspace H[0] is plotted as well. Atomic units were used
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cannot be of bad quality, considering that any linear function of the form ax + b
can be exactly expanded in H[M] at any resolution level M . As the wave functions
at the steepest parts are almost linear, we do not expect large errors in the scaling
function expansion. This prediction is justified in the third plot of Fig. 1, where the
difference of the exact and projected wave function is shown. The large deviations in
the approximate wave function �

[M]
i should have a different origin.

A careful study of the first part of Fig. 1 leads to the conclusion, that the solution
of the eigenvalue problem has (apart from small irregularities) an oscillatory form
similar to the exact solution. The essential difference between the two wave functions
is that the approximate wave function �

[M]
i has a slightly smaller wavelength than the

exact one, leading, of course, to a larger kinetic energy. In the case of the excited state
i = 5, e.g., 〈�5|T |�5〉 = 0.1352, while 〈�[0]5 |T |�[0]5 〉 = 0.1389. The same general
experience was gained by studying other excited states of the box model as well as
those of the harmonic oscillator.

In the following sections we will analyze the reasons, why the above effects appear,
and suggest a possible solution.

3 The kinetic energy operator in the subspaces H[M]

As in the previous example the systematic error in the wave function occurred in
regions without a potential energy contribution, we conclude, that the effect is due to
the representation of the kinetic energy operator. Posing this question is not as heretical
as one might think for the first sight. In the original formulation of matrix mechanics by
Heisenberg, Born and Jordan, the physical quantities are represented by infinite matri-
ces satisfying the appropriate commutation rules. There is no specific prescription
for the determination of their matrix elements. On the other hand, Schrödinger works
in the Hilbert space of the square integrable functions H, with a specific prescrip-
tion for the operator representation of physical quantities, in particular, T = −�/2.
Von Neumann has shown [16] the equivalence of both descriptions with the abstract
Hilbert space equipped with linear operators for physical quantities. One can consider
here that the subspace H[M] ⊂ H is itself an infinite dimensional separable Hilbert
space, and as such, can serve for a complete description of any quantum mechanical
system, on its own right. The significant difference of the multiresolution expansion
from the usual atomic orbital expansions is that the latter span a finite dimensional
subspace, which is in principle unable to describe a quantum system in all details.

As the subspace H[M] essentially differs from the complete space of square inte-
grable functions, it is natural that the elements of the infinite matrix K [M]j� correspond-
ing to the physical quantity of the kinetic energy differs from the matrix elements
T [M]j� = 〈sM j |−�/2 |sM�〉, since −�/2 is the operator representation of the kinetic
energy in a different Hilbert space. We would like to emphasize, that by choosing an
appropriate infinite matrix representation K [M] of the kinetic energy we do not aim to
give an improved discretization of the Laplacian operator. Instead, our approach is not
algorithmic, but specifically physical. We refer to one of the basic tasks of quantum
mechanical descriptions, i.e., for a given physical quantity, we search for an operator
in the Hilbert space H[M] which is able to provide the expectation value as well as all
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possible measurable values of this quantity. As we will see later, this intention can be
achieved even if the matrix elements of the Laplacian do not exist.

In order to avoid any weird representations, we would like to keep some properties
of the “canonical” (Galerkin) approach, which are summarized below.

1. Considering, that the scaling functions are usually (but not necessarily) real,
according to (10)

T [M]j� =
(

T [M]� j

)∗ = T [M]� j . (12)

2. Using the definition of sM�(x) and after a simple variable transformation in (10),
one arrives at the shift invariance property

T [M]j� = T [M]j−� , (13)

indicating that the kinetic energy is represented by a band matrix.
3. If the scaling functions are compactly supported on the interval [0, N − 1] (as in

the case of Daubechies-N bases),

T [M]� = 1

2

∫
s′M�(x)s′M0(x)dx = 0,

if |�| > N − 2. (14)

Here N is the number of parameters which define the mother scaling function.
4. Using definition (3) in (10) leads to a scaling property

T [M]j� = 22M T [0]j� . (15)

This simple scaling behavior is a consequence of the MRA definition (3) of the
basis set and holds generally for the canonical matrix elements in the framework
of MRA.

5. In three spatial dimensions a direct product basis function set | j1 j2 j3〉 = sM j1(x1)

sM j2(x2)sM j3(x3) is used applying the three (x1, x2, x3) Cartesian coordinates. As
the Laplacian is a simple sum of second derivatives according to the three spatial
variables, orthonormality of the basis functions results in

〈 j1 j2 j3| −�/2|�1�2�3〉 = T [M]j1�1
δ j2�2δ j3�3

+δ j1�1 T [M]j2�2
δ j3�3

+δ j1�1δ j2�2 T [M]j3�3
. (16)

Consequently, the case of the 3D kinetic energy operator is straightforwardly
reduced to the one dimensional representation.

Hermiticity (12) and translational invariance (13) are natural requirements for any
operator representations of the kinetic energy. Though we are not obliged to keep
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property (14), this is one of the most attractive features of using compactly supported
basis sets, thus this prescription is applied as well. Transformation of the kinetic
energy matrix elements with increasing resolution (like the scaling property (15)) will
be discussed later. For the matrix K [M] representing the kinetic energy we require the
followings at any resolution level M

K [M]j� =
(

K [M]� j

)∗ = K [M]� j , (17)

K [M]j� = K [M]j−� = K [M]| j−�|, (18)

K [M]� = 0, if |�| > N − 2. (19)

In three dimensions we additionally apply

K [M]j1 j2 j3,�1�2�3
= K [M]j1�1

δ j2�2δ j3�3

+δ j1�1 K [M]j2�2
δ j3�3

+δ j1�1δ j2�2 K [M]j3�3
. (20)

The role of operators assigned to observables is to provide the possible and expec-
tation values of the corresponding physical quantities. A proper representation of the
kinetic energy should give the known k2/2 eigenvalues with eigenvectors which give
reasonable approximations of the free electron wave function eikx . In the following
considerations we will prove that the best approximation PM eikx is really an eigen-
vector of any matrix satisfying the requirements (17)–(19). The question remains to
clarify how well the equality

∑

�∈Z
K [M]j� 〈sM�|eikx 〉 ?= k2

2
〈sM j |eikx 〉 (21)

is satisfied.
Defining the Fourier transform by f̂ (ξ) = (2π)−1/2

∫∞
−∞ f (x)e−iξ x dx and using

definition (3) we have

〈sM�|eikx 〉 = 2−M/2eikM �(2π)1/2 ŝ(−kM ), (22)

where kM = 2−M k is the scaled wave number. Using this expression in the left hand
side of (21)
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∑

�∈Z
K [M]j� 〈sM�|eikx 〉

=
∑

�∈Z
K [M]j� eikM (�− j)2−M/2eikM j (2π)1/2 ŝ(−kM )

=
(

∑

�∈Z
K [M]j−� eikM (�− j)

)
〈sM j |eikx 〉. (23)

It is clear that just the shift invariance (18) ensures that the projection of the free
electron wave function to H[M] is an eigenfunction of K [M], with the eigenvalue

ε[M](k) =
∑

�∈Z
K [M]� e−ikM �. (24)

An analogous statement for finite difference differentiation operator approximations
can be found in [17,18]. Further connections between wavelet and finite difference
approaches can be found in [19]. As according to (17) K [M]� is Hermitian, its eigen-
values ε[M](k) are real and

ε[M](−k) =
∑

�∈Z
K [M]� eikM � =

∑

�∈Z
K [M]−� e−ikM � = ε[M](k), (25)

i.e., ε[M](k) is symmetric in k. The above natural physical requirements are satisfied
for all reasonably chosen K [M].

The fundamental question is how well ε[M](k) approximates the free electron kinetic
energy k2/2. In order to understand this, some properties of ε[M](k) will be studied
below. As the argument kM in definition (24) exponentially decreases with increasing
resolution M , it is natural to consider the Taylor expansion of ε[M](k). Due to the sym-
metry of ε[M](k) all its odd order derivatives should be zero in k = 0. This condition
is equivalent to

∑
�∈Z �2n+1 K [M]� = 0 for any n = 0, 1, . . ., which follows from (18).

In the ideal case ε[M](k) would be equal to k2/2 requiring

ε[M](0) =
∑

�∈Z
K [M]� = 0, (26)

d2ε[M]

dk2 (0) = −2−2M
∑

�∈Z
�2 K [M]� = 1, (27)

d2nε[M]

dk2n
(0) = (−1)n2−2nM

∑

�∈Z
�2n K [M]� = 0, (28)

for n ≥ 2. In Appendix A, we have shown that for the canonical kinetic energy matrix
sum rules (A1) and (A3) ensure that (26) and (27) are satisfied. It is easy to see,
however, that regardless of the choice of K [M]� the equivalence of ε[M](k) and k2/2
can never be perfect. According to (19) ε[M](k) is a finite trigonometric polynomial,
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Fig. 2 The canonical kinetic energy function ε
[0]
can(k) (dashed line) of the Daubechies-6 basis set

compared to the free particle kinetic energy k2/2 (solid line). The kinetic energy ε
[0]
F (k) of the Fourier

type approximation with the same number of matrix elements is plotted by a dotted line. Atomic units were
used

consequently it is 2π periodic, and cannot coincide with the free electron energy in
the whole range −∞ < k <∞.

Figure 2 shows that the canonical kinetic energy function approaches the “Brillouin
zone” boundaries at k = −π and k = π with a horizontal tangent. This difficulty can
never be resolved by choosing any set of K [M]� values for 2π periodic ε[M](k) func-
tions, which leads to the conclusion, that any multiresolution quantum mechanics
loses its applicability for the energies with |k| = 2π/λ ≈ π . In other words, for the
wavelength of the particle we get the condition λ/2 � 1. It is not surprising from
the physical point of view, since 1 is the grid length of the scaling function basis set
at resolution level M = 0 and no wave functions with a wavelength comparable to
the grid length are expected to be described in a satisfactory manner. If the resolution
increases, however, the scaling property (15) results in

ε[M]can (k) = 22M
∑

�∈Z
T [0]� e−ikM � = 22Mε[0]can(2

−M k). (29)

Since the argument of ε
[0]
can decreases exponentially with increasing resolution, the

quality of the Taylor expansion becomes increasingly better, as it can be traced in
Fig. 2, in the close neighborhood of k = 0. Although it is very satisfying that the
canonical kinetic energy can reproduce the exact values in the infinite resolution limit,
in a practical calculation, however, one should stay at a relatively low resolution M .
At these resolutions the function ε

[M]
can (k) performs rather poorly for larger k, and there
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is a reasonable hope to find matrix elements K [M]� which provide significantly better
approximation of the function k2/2.

4 Assignment strategies for the optimal kinetic energy matrix

There are several possible decisions for choosing the matrix elements K [M]� in order to
approximate k2/2 by a finite trigonometrical polynomial expansion of the form (24).
As a first remark, we recall the scaling property (15) of the canonical kinetic energy
matrix. Since the values of K [M]� are not determined by a mathematical formula (sim-
ilar to (10)), their scaling behavior cannot be derived. On the other hand, however, the
necessary requirement (27) implies that in the leading order the kinetic energy matrix
elements should scale as K [M]� ∼ 22M . We would like to emphasize, that choosing the
scaling formula

K [M]� = 22M K [0]� (30)

is by no means a must, we have decided to apply it in order to decrease the many
degrees of freedom of the problem. After this, we still have to determine the values of
the zeroth level matrix elements, for which we consider two different philosophies.

4.1 The Fourier series approach

The best possibility we can expect using an expression of the form (24) is that the
function k2/2 is correctly described in the interval (−π, π). This, however, requires
the infinite Fourier series expansion

k2

2
= π2

6
+ 2

∞∑

�=1

(−1)�

�2 cos(�k). (31)

Applying (19) leads to a truncation of (31) at � = N − 2. It is clear that identi-
fying K [0]� with the expansion coefficients of the truncated series would not satisfy
any of the criteria (26)–(28). It is an elementary requirement that a particle with zero
momentum should have zero kinetic energy (criterion (26)). On the other hand, in
the large resolution limit we should recover the exact kinetic energy, and as we have
discussed above, this is equivalent to (27). Considering these arguments, we suggest
the following truncation process

αF N
� =

⎧
⎪⎪⎨

⎪⎪⎩

π2

6 for � = 0,
(−1)�

�2 for 1 ≤ |�| ≤ N − 3,

− 1
2

(
π2

6 + 2
∑N−3

�=1
(−1)�

�2

)
for |�| = N − 2.

(32)

The definition K [M]� = 22MF N
� automatically satisfies sum rule (26), whereas with an

appropriate choice of the normalization factor α, (27) can also be fulfilled. The kinetic
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Table 1 The error of the total energy E [0]Fi and the wave function �
[0]F
i of the Fourier method compared

to the ones of the canonical quantities E [0]i and �
[0]
i for the Daubechies-6 basis set

i |Ei − E [0]i | |Ei − E [0]Fi | ‖�i −�
[0]
i ‖ ‖�i −�

[0]F
i ‖

1 1.0802× 10−4 2.7721× 10−4 1.0392× 10−2 1.4545× 10−2

2 4.4247× 10−4 1.6186× 10−3 1.8878× 10−2 2.1309× 10−2

3 1.0681× 10−3 5.4125× 10−3 2.7654× 10−2 2.6331× 10−2

4 2.1982× 10−3 1.3550× 10−2 3.6618× 10−2 2.8380× 10−2

5 4.3310× 10−3 2.7925× 10−2 4.5968× 10−2 2.7997× 10−2

Ei and �i are the exact total energy and wave function, respectively. Label i = 1 indicates the ground
state, whereas i = 2, 3, 4, 5 are the successive excited states of the potential box (11), with L = 15 a.u.,
W = 100 a.u.

energy function ε
[0]
F (k) calculated according to (24) using the matrix elements deter-

mined by (32) is plotted in Fig. 2. According to the figure, the Fourier type approach
results in a weaker quality approximation than the canonical calculation, especially in
the low energy region. This effect can be traced in Table 1; both the total energy and
the wave function deviate more from the exact quantities than those of the canonical
calculation, except for the wave function of higher excited states.

4.2 The Taylor series approach

As we have seen, the quality of the ε[0](k) for smaller k values is essential both in rough
resolutions and also in the limit M →∞. This leads to the conclusion that the Taylor
expansion of the kinetic energy function should satisfy as much conditions of (26)–
(28) as possible with the given number of non-zero matrix elements K [M]� . We suggest
the following scheme for determining the optimal kinetic energy matrix. According to
(18) and (19) the number of non-zero, essentially different matrix elements is N − 1,
offering too much freedom in the optimization process.

Consequently, we have decided to keep only one independent parameter t and to
define the kinetic energy matrix elements by

K [M]� = 22MT N
� (t) (33)

with

αT N
� (t) =

⎧
⎨

⎩

1 for � = 0,

t for |�| = 1,

t�(t) for 2 ≤ |�| ≤ N − 2.

(34)

Quantities t�(t) are determined by the solution of the linear system of equations
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⎛

⎜⎜⎜⎜⎜⎝

1 1 . . . 1
24 34 . . . (N − 2)4

26 36 . . . (N − 2)6

...
...

. . .
...

22(N−3) 32(N−3) . . . (N − 2)2(N−3)

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

t2
t3
...

tN−2

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

−1/2− t
−t
...

−t

⎞

⎟⎟⎟⎠ . (35)

The normalization factor

α = −2t − 2
N−2∑

�=2

�2t�(t). (36)

It is easy to verify that the conditions (26) and (27) are always satisfied by these values
and (28) fulfills until n = N − 3.

Notice, that Eq. 35 have a solution even in the case of N = 4, i.e., for the Daube-
chies-4 scaling functions, where the canonical kinetic energy matrix elements are not
defined at all, as the application of formula (10) requires the derivative of the scaling
function, which does not exist in this case. For an illustration we have carried out a
calculation for the potential

V (x) =
⎧
⎨

⎩

0 if −L ≤ x < 0,

V0 if 0 ≤ x ≤ L ,

W if |x | > L ,

(37)

with Daubechies-4 scaling functions and with the Taylor series based method out-
lined above. The optimal value of the parameter t was determined as described later.
Figure 3 shows the exact and the M = 0 level approximated wave function of the

Fig. 3 Exact (solid line) and approximate (dashed line) wave functions �1 and �
[0]T
1 of the potential

model (37), with L = 15 a.u., W = 100 a.u. and V0 = 0.5 a.u., using the Daubechies-4 scaling function in
the Taylor series method. Atomic units were applied
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Fig. 4 The deviation of the approximate total energy E [1]T3 and wave function �
[1]T
3 from their exact

counterparts E3 and �3 (solid lines) of the potential model (37), with L = 17 a.u., W = 10 a.u. and
V0 = 0.01 a.u., using the Taylor series method. As references, horizontal lines indicate the values of the
canonical (dashed line) and the Fourier series method (dotted line) results. Sign © stands for the results
of the Daubechies-4 scaling function, ×, � and � mean Daubechies-6, Daubechies-8 and Daubechies-10
calculations, respectively. Atomic units were applied

2nd excited state of the model (37). This state was selected in order to demonstrate
the capabilities of the method, not only in the free electron case but in the classically
unavailable regions (right hand side of the box, Ei < V0), as well. It is seen that the
construction of the kinetic energy matrix by the Taylor expansion method leads to a
rather satisfactory result even at this low resolution approximation.

For finding the optimal values of t in the construction (34)–(36) we have plot-
ted the deviation of the approximate total energy from the exact one as a function
of the parameter t in Fig. 4. Similarly, the norm of the difference of the exact and
approximated wave function of the model potential (37) is also shown. It can be real-
ized, that in quite a broad range of the parameter t , the kinetic energy matrix of the
Taylor’s expansion method leads to a considerably better quality result than the canon-
ical choice, regarding both the total energy and the wave function. The Fourier series
method, however, leads to unacceptable solutions.
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Table 2 The recommended kinetic energy matrix parameter t for the Taylor series based construction
(33)–(36) in case of Daubechies-N scaling function sets (N = 4, 6, 8, 10)

N 4 6 8 10
t −0.54 −0.47 −0.57 −0.58

According to Fig. 4, a minimum in the error functions can be identified which
defines the optimum value of parameter t . We would like to emphasize, that around
the minima the curves are flat, even for the energy deviations (consider, the logarith-
mic scale on the vertical axis). The error curves are similar to all of the lower energy
excited states, and even the positions of the minima are almost the same. As the worst
example, we adduce the case of Daubechies 8 scaling function where the average value
of the optimal t calculated for the energy and wave function error curves of several
excited states is 0.57, with a standard deviation of±0.06. Also, by playing around the
parameters L , W and V0 of model (37) we could realize, that the optimum t values are
essentially potential independent. Extending the scope of the investigations to finer
resolution levels M = 0, 1, 2, 3, 4 we have found that the position of the minima of
the error curves stabilizes at M = 1, there is no significant change at fine resolutions.
Further, we have studied the exactly solvable model of the harmonic oscillator with
the potential

V (x) = ω2

2
x2. (38)

We have experienced the same behavior as in the case of the previous physical system
(37). The positions of the optimum t values are independent of the excitation level i , of
the resolution M and also of the value of the potential width ω−1. Finally, we conclude,
that to a good approximation, the optimum values of parameter t in the kinetic energy
matrix definition (33)–(36) can be chosen model independently, which works also for
many low lying excited states. In Table 2 we summarize our recommendations for the
best values of t for various Daubechies basis function sets. As the error curves are
rather flat around the minima, the values in the table can be changed by ±10 percent
without a considerable change in the quality of the total energy and wave function
approximations.

5 Optimal kinetic energy matrix in systematically refined wavelet subspaces

The main advantage of wavelet based calculations is that besides the scaling function
basis set {sM�} of

H[M] = H[M−1] ⊕W [M−1] (39)

= H[M−2] ⊕W [M−2] ⊕W [M−1] (40)

= H[0] ⊕W [0] ⊕W [1] ⊕ · · · ⊕W [M−1] (41)

123



J Math Chem (2009) 46:261–282 275

equivalent sets like {sM−1 �, wM−1 �} or {sM−2 �, wM−2 �, wM−1 �}, . . . ,
{s0�, w0�, . . . , wM−1 �} exist, where the wavelets of level m are defined by the mother
wavelet w(x) as

wm�(x) = 2m/2w(2m x − �) (42)

for any m = 0, . . . , M − 1. The wavelets are added only at those positions where the
description of the wave function is not sufficiently precise [14]. The question arises,
how an optimum kinetic energy matrix can be built for these systematic refinements
of the basis set.

In the previous sections we have concentrated on the methods for replacing
〈sM j |T̂ |sM�〉 type matrix elements. In the wavelet function basis sets there appear
canonical matrix elements of type 〈sm0 j |T̂ |wm1�〉, 〈wm1 j |T̂ |wm2�〉, as well. In this
section we will show that there exists a method for a systematic choice of optimal
kinetic matrix elements in the wavelet basis, too.

The basis sets {sM�} and {sM−1 �, wM−1 �} are connected by the unitary transfor-
mation

sM−1 �(x) = ∑
j∈Z

h j−2� sM j (x), (43)

wM−1 �(x) = ∑
j∈Z

g j−2� sM j (x) (44)

according to [9]. Here the constants hk define the mother scaling function s(x) by
the refinement Eq. 43. The wavelets are generated from these values by applying
gk = (−1)kh∗−k+1. The expansion coefficients satisfy the orthonormality conditions

∑

k∈Z
h∗k−2i hk−2 j = δi j , (45)

∑

k∈Z
g∗k−2i gk−2 j = δi j , (46)

∑

k∈Z
h∗k−2i gk−2 j = 0. (47)

We have already criteria (17)–(18) and (26)–(28) for building the matrix elements
K ss[M−1]

j� among the scaling functions sM−1 j and sM−1 � which give better results
than the canonical ones. The question arises, how to complete this matrix with the
blocks K sw[M−1]

j� , K ws[M−1]
j� and K ww[M−1]

j� in order to have an optimum description
at resolution level M . The basic idea is that we will require the kinetic energy matrix
K ss[M]

j� among scaling functions at level M to satisfy the criteria (17)–(18) and (26)–
(28). As we have mentioned it previously, the application of the scaling property (30)
is not obligatory, and we will not assume (30) in the following considerations. The
matrices
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(
K ss[M−1] K sw[M−1]
K ws[M−1] K ww[M−1]

)
←→ K ss[M] (48)

are connected by the unitary transformations (43), (44) as

K ss[M−1]
i j =

∑

k,�

h∗k−2i h�−2 j K ss[M]
k� , (49)

K sw[M−1]
i j =

∑

k,�

h∗k−2i g�−2 j K ss[M]
k� , (50)

K ws[M−1]
i j =

∑

k,�

g∗k−2i h�−2 j K ss[M]
k� , (51)

K ww[M−1]
i j =

∑

k,�

g∗k−2i g�−2 j K ss[M]
k� , (52)

and by its inverse transformation. Requiring shift invariance all matrix elements depend
only on the difference of their indices (18). With simple index transformations one
arrives at

K ss[M−1]
� =

∑

k,n

h∗k hk−n+2�K ss[M]
n , (53)

K sw[M−1]
� =

∑

k,n

h∗k gk−n+2�K ss[M]
n , (54)

K ws[M−1]
� =

∑

k,n

g∗k hk−n+2�K ss[M]
n , (55)

K ww[M−1]
� =

∑

k,n

g∗k gk−n+2�K ss[M]
n . (56)

At any level M the matrix K [M] can be decomposed as

K [M] = 22M T [0] +�[M], (57)

where T [0] is the canonical kinetic energy matrix and �[M] is a correction, provided
that the canonical representation exists. For �[M] = 0 Eqs. 53–56 lead to a sys-
tem of eigenvalue equations for the variables T [0]n . These equations are satisfied by
the canonical matrix elements according to [20]. All that remains is to find a set of
correction matrix elements by replacing the K [M] submatrices in (53)–(56) with the
corresponding elements of �[M]. We will not further assume any scaling property for
�[M] similar to (30) and we also drop limitation (19). We now apply a specific choice,
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�[M]n =
{

�
[M]
2 j if n = 2 j ,

0 if n is odd.
(58)

Substituting (58) in (53)–(56), in place of the K [M]n matrix elements, and applying
(45)–(47) we have

�
ss[M−1]
� = �

ss[M]
2� , (59)

�
sw[M−1]
� = 0, (60)

�
ws[M−1]
� = 0, (61)

�
ww[M−1]
� = �

ss[M]
2� . (62)

Considering this result, the following strategy for harmonizing the determination of
the optimum kinetic energy matrix with an iterative refinement of resolution can be
developed. As we have proved in Sect. 4.2 the requirement that the expansion of the
function ε(k) approximates the exact k2/2 leads to a considerable advance of the
results. This is equivalent with satisfying (26), (27) and as many (28) equations as
possible.

At resolution level M = 0 we can either determine the independent kinetic energy
matrix elements K ss[0]

� , (� = 0, . . . , N −2) using the Taylor series method described

above, or by separating K ss[0]
� = T ss[0]

� + �
[0]
� and substituting it into (26), (27)

and the next N − 3 pieces of Eq. 28, we can determine the set of corrections �
[0]
� .

(In fact, the number of �
[0]
� parameters is not restricted, however, it seems to be

rather obvious to limit their number to N − 1.) If a refinement step is necessary,
we extend our basis set by introducing the M = 0 level wavelets {w0�}. As this
basis is equivalent to the set of the M = 1 level scaling functions {s1�}, the correc-
tion to the canonical kinetic energy matrix is determined at this level by choosing
K ss[1]

� = 22T ss[0]
� + �

[1]
� , where the correction set �

[1]
� is subject to the constraint

�
[1]
2�0

, (�0 = 0, . . . , N − 2). We allow corrections only at even indices � in order to
be able to apply (59)–(62). Solving the system of Eqs. 26–28, the resulting values
�
[1]
2�0

are added as corrections to each off-diagonals in the scaling function-wavelet

representation as K ss[0]
�0
= T ss[0]

�0
+ �

[0]
�0

and K ww[0]
�0

= T ww[0]
�0

+ �
[0]
�0

. The mixed

components remain uncorrected, K sw[0]
�0

= T sw[0]
�0

and K ws[0]
�0

= T ws[0]
�0

.
By further refinements, adding additional levels of wavelets, the corrections are

determined at the M th scaling function level by choosing K ss[M]
� = 22M T ss[0]

� +�
[M]
�

with the non-zero corrections �
[M]
2M �0

, (�0 = 0, . . . , N − 2). The solution of Eqs. 26–
28 determines the correction values. The block structure of the kinetic energy matrix
similar to (48) contains blocks belonging to the several wavelet levels, e.g., K s0s0 ,
K w0w0 , K w1w1 , . . ., K wM−1wM−1 , and K s0w0 , K w0w1 , etc. None of the mixed blocks,
like K s0w0 , K w0w1 , need any correction. The diagonal block K wM−1wM−1 is adjusted
in every 2M−1th off-diagonal by the values �[M], the block K w1w1 is corrected in
every second off-diagonal by the same series of �[M], while both K s0s0 and K w0w0
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Table 3 Suggested T [0] matrix elements for the Daubechies-4 basis set

� −3 −2 −1 0 1 2 3

β−1T sw[0]
�

− 2−√3
6

2
3 −

√
3

3 − 2
3

2+√3
6

β−1T ws[0]
�

2+√3
6 − 2

3 −
√

3
3

2
3 − 2−√3

6

β−1T ww[0]
�

− 1
6 2 7 2 − 1

6

needs an addition of �[M] to each off-diagonals. (Naturally, the diagonals have to be
also modified by �

[M]
0 ).

This procedure seems to extend the spatial range of the kinetic energy operator with
increasing resolution. This argumentation is, however, misleading in two sense. In the
algorithmic sense, the number of essential off-diagonals does not increase to infinity
(a maximum factor of 2 is possible only). In the physical sense, on the other hand,
the spatial range of the kinetic energy operator remains constant, considering, that
the grid-length of the wM�(x) wavelets decreases as ∼ 2−M . Numerical calculations
show, that the extension of resolution leads to an exponential decrease of the average
magnitude of �

[M]
� , indicating that the corrected kinetic energy matrix tends to the

canonical one at the infinitely fine resolution limit.
In the above considerations we have supposed, that the canonical kinetic energy

matrix elements do exist, which is, however, not satisfied for the Daubechies-4 basis
set. This problem can be resolved by noticing that for the expansion coefficients
h0 = (1 + √3)/(4

√
2), h1 = (3 + √3)/(4

√
2), h2 = (3 − √3)/(4

√
2) and h3 =

(1−√3)/(4
√

2) the set of “canonical” matrix elements

T ss[M]
0 = β 22M ,

T ss[M]
−1 = T ss[M]

1 = −β 22M 2

3
, (63)

T ss[M]
−2 = T ss[M]

2 = β 22M 1

6

fulfills the transformation rule (53), and the wavelet blocks of the kinetic energy matrix
are defined by (54)–(56) leading to the values listed in Table 3. Choosing the normali-
zation parameter β ≈ 1.3 reproduces the results from Sect. 4.2 acceptable. Of course,
a correction �

[M]
� is necessary even in the M = 0 case, as the values (63) alone do

not satisfy Eq. 27. The calculation of the correction values is similar to the procedure
described above.

6 Summary

Studying exactly solvable models in the framework of MRA we have found that the
representation of the kinetic energy operator plays an essential role in the quality
of the results achieved by approximate solutions at a given resolution level M . The
regular grid of the scaling function basis set introduces an artificial consequence of
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Table 4 The recommended kinetic energy matrix elements for the Taylor series based construction in case
of Daubechies-N scaling function sets

N = 4 N = 6 N = 8 N = 10

T N
0 1.3157894737 1.0269360269 1.4668325041 1.5177613012

T N
1 −0.7105263158 −0.4826599327 −0.8360945274 −0.8803015547

T N
2 0.0526315789 −0.0586700337 0.1207733653 0.1495444216

T N
3 0.0326358826 −0.0206082682 −0.0344316374

T N
4 0.0047739298 0.0027102582 0.0074722170

T N
5 −0.0002005664 −0.0013201227

T N
6 0.0000034864 0.0001689233

T N
7 −0.0000133612

T N
8 0.0000004634

periodicity. Instead of a free particle, the MRA expansion describes rather an electron
with a momentum dependent effective mass m∗(k) = k2/(2ε[M](k)), where the func-
tion ε[M](k) is determined by the matrix elements of the kinetic energy matrix. We
have shown that in the case of resolution level M = 0 the MRA expansion loses its
applicability if the kinetic energy approaches or exceeds the value Ekin = π2/2 a.u.
(corresponding to the limit value k = π ). By increasing the resolution, the applica-
bility range extends exponentially as k < 2Mπ , Ekin < 22Mπ2/2 a.u., and artificial
periodicity effects disappear in this limit.

However, in the numerical practice the level of resolution should be kept as low as
possible, in order to avoid the need for extensive computational resources. We have
demonstrated that for low resolutions the kinetic energy of the numerical calculations
is overestimated compared to the exact values. The effect is due to the fact that the
free particle energy k2/2 is improperly reproduced by its 2π -periodic approximation
ε
[M]
can (k). This reproduction can considerably be improved by introducing alternative

matrix elements of the kinetic energy matrix instead of the canonical ones. Both the
total energy and wave function improvements are well pronounced at low resolutions
as it can be traced from Fig. 4. A close optimal, system and eigenstate independent
choice of the kinetic energy matrix elements is derived from the formulas of the Taylor
series approach (33)–(36) and from our suggestion for its parameter value t in Table 2.
At an arbitrary resolution level M the kinetic energy matrix elements are calculated
as

K [M]j� = K [M]| j−�| = 22MT N
| j−�|,

where N determines the number of essential matrix elements, as T N
| j−�| = 0 if | j−�| >

N − 2. Table 4 lists the values of T N
� for various Daubechies-N scaling function sets.

The Taylor series approach can be extended to the cases where the basis set starts
with scaling functions given on a relatively coarse grid, and consecutive refinements
are added by wavelets of finer resolutions. We have given an explicit method for calcu-
lating corrected kinetic matrix elements. At the infinite resolution limit, the corrected
matrix elements converge to the canonical ones.

123



280 J Math Chem (2009) 46:261–282

In three spatial dimensions expression (20) should be applied. With the suggested
method it is possible to define a kinetic energy matrix even in the case of the Daube-
chies-4 basis set, where the scaling function is not differentiable, thus the canonical
approach is not applicable. In the general form, this procedure is well suited to adaptive
refinement algorithms.

Acknowledgements This work was supported by the Országos Tudományos Kutatási Alap (OTKA),
Grant Nos. T046868, NDF45172 and the Bolyai János Research Grant.

Appendix A: Some elementary properties of the canonical kinetic
energy matrix

We will prove here, that the canonical kinetic energy matrix elements defined by (10)
satisfy simple sum rules as

∑

�∈Z
T [M]� = 0, (A1)

∑

�∈Z
� T [M]� = 0, (A2)

∑

�∈Z
�2T [M]� = −22M (A3)

with the notation introduced in (13). Of course, these relations hold only if the canon-
ical kinetic energy matrix exists, i.e., if the scaling function is differentiable. This
condition is satisfied for the Daubechies basis sets with 6 or more parameters.
Proof of (A1). At any resolution level M the scaling function basis set is capable to
exactly expand any constant function [9,10], consequently, for any x

∑

�∈Z
c[M]� sM�(x) = 1 (A4)

with the expansion coefficients c[M]� = 2−M/2. Differentiating, multiplying by s′M0(x)/

2 and integrating one gets

∑

�∈Z

1

2

∫
s′M0(x)s′M�(x)dx =

∑

�∈Z
T [M]� = 0. (A5)

Proof of (A2). The basis set {sM�|� ∈ Z} exactly expands the identity function, i.e.,
for all x

∑

�∈Z
c[M]� sM�(x) = x (A6)

with the appropriate expansion coefficients

123



J Math Chem (2009) 46:261–282 281

c[M]� =
∫

xsM�(x)dx = 2−3M/2(µ1 + �), (A7)

where we have applied definition (3), a proper integral variable transformation, and
the fact that

∫
s(y)dy = 1 [9]. The quantity µ1 =

∫
ys(y)dy is the first momentum

of the mother scaling function. Differentiating (A6), multiplying by s′M0(x)/2 and
integrating we arrive at

∑

�∈Z
c[M]�

1

2

∫
s′M0(x)s′M�(x)dx =

∑

�∈Z
c[M]� T [M]�

= 1

2

∫
s′M0(x)dx = 1

2
[sM0(x)]∞−∞ . (A8)

As the scaling functions are square integrable, sM0(±∞) = 0, and

0 =
∑

�∈Z
c[M]� T [M]�

= 2−3M/2µ1

∑

�∈Z
T [M]� + 2−3M/2

∑

�∈Z
� T [M]� . (A9)

Considering (A1) immediately follows (A2).
Proof of (A3). For the compactly supported scaling functions of Daubechies with 6 or
more parameters the function x2 is still among the exactly expandable functions.

∑

�∈Z
c[M]� sM�(x) = x2 (A10)

where the expansion coefficients are

c[M]� =
∫

x2sM�(x)dx = 2−5M/2(µ2 + 2�µ1 + �2), (A11)

after similar steps applied in the previous proof. The notation
∫

y2s(y)dy = µ2 was
introduced. Differentiating (A10) leads to

∑

�∈Z
c[M]� T [M]� =

∫
x s′M0(x)dx

= −
∫

sM0(x)dx = −2−M/2. (A12)

The second equality follows from partial integration, and from the fact that the inte-
grated part disappears due to sM0(±∞) = 0. Substituting (A11) into (A12) and using
(A1) and (A2) gives (A3).
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